

Optimization For Grade Transitions In Polyethylene Solution Polymerization

Jun Shi¹, Intan Hamdan², Sarat Munjal², Lorenz T. Biegler¹

¹Center of Advanced Process Decision-making Department of Chemical Engineering Carnegie Mellon University

²The Dow Chemical Company

Dynamic Optimization Models Grade Transition for LLDPE

- Continuous Stirred-Tank Reactor (CSTR) (represents two actual processes)
- Assume perfect mixing
- Three types of variables
 - Manipulated variables
 - Ethylene, comonomer, hydrogen and catalyst feed flowrates

 F_1 , F_2 , F_h , F_c

- Inlet temperature of cooling media
- Output variables
 - Product properties: MI and density
 - Process requirement: ethylene conversion and reactor temperature
- State variables
 - Concentrations and moments
- Method of moments
 - predict product properties from state variables

Reactions:

- Chain initialization
- Chain propagation
- Chain transfer
- Site deactivation

Process Model Development

Assumptions and Components

- Perfect mixing
- Chain Initiation,
- Chain Propagation,
- Chain Transfer,
- Site Deactivation.

•The model has five parts

- Mass and heat balance
- Moment model
- Surrogate model for VLE
- Recycle time delay model
- Process constraints

Dealing with Specification Band Multistage Optimization

Motivation:

- In-spec product is qualified for sale.
- Specification band should be taken into account when calculating off-grade.

Results and Analysis

The multistage solution

- A faster transition to reach the boundary of the second band
- More oscillations within the specification band
- Better performance